Tetrahedron Letters No. 23, pp. 22-24, 1960. Pergamon Press Ltd. Printed in Great Britain

GIBBERELLIN AQ

B. E. Cross, R. H. B. Galt and J. R. Hanson

Imperial Chemical Industries Limited, Akers Research Laboratories, Welwyn, Herts.

(Received 16 September 1960)

A more detailed examination of the crude acidic metabolites produced in the fermentation of <u>Gibberella fujikuroi</u> described in our earlier communication has revealed the presence of a new acid. The gummy fraction eluted from the charcoal-celite column with water containing 80% acetone has been rechromatographed on silica-celite (1:2). Elution with 10% ethyl acetate in light petroleum afforded a plant growth promoting acid for which we propose the name gibberellin Aq.

Gibberellin A_9 (I), which formed needles from acetone - light petroleum (b.p. 60-80°), m.p. 208-211° dec., $[a]_D^{22}$ -12° (EtOH), $\nu_{\rm max}^{\rm Nujol}$ 3098 (OH of carboxyl), 1740, 1723, 1659 and 893 cm $^{-1}$, and its methyl ester (II), m.p. 136°, $[a]_D^{22}$ -15° (EtOH), $\nu_{\rm max}^{\rm Nujol}$ 1777 (γ -lactone), 1738 (ester), 1659 and 873 (=CH₂) cm $^{-1}$, gave analyses consistent with the formula $C_{19}^{\rm H}_{24}^{\rm O}_4$ for the acid (I). Microhydrogenation of (II) revealed the presence of one double bond, shown to be a terminal methylene

¹B. E. Cross, R.H.B. Galt and J.R. Hanson, <u>Tetrahedron Letters</u> No. 15, 18 (1960).

group exocyclic to a 5-membered ring by osonolysis of (II) to formal-dehyde (0.6 mol.) and a nor-ketone (III), $C_{19}^{H}_{2\downarrow}^{0}_{5}$, m.p. $20\downarrow-207^{\circ}$, ν^{Nujol}_{max} 1772 (γ -lactone), 1738 (ester and 5-ring ketone) cm $^{-1}$. Structure (I) for gibberellin A_{9} , suggested by the above results, was established by degradation of gibberellin A_{1} (IV) 2 , 3 to (III). The tosylate (V) of gibberellin A_{1} methyl ester nor-ketone (VI) 4 with boiling collidine

gave a \$\tilde{A}^2\$-elefin, \$C_{19}\$H\$_{22}\$05, m.p. 160-161°, which on catalytic hydrogenation afforded a product identical in all respects with gibberellin \$A_9\$ methyl ester nor-ketone (III).

The structures of gibberellins A_7 and A_9 are both dependent upon that of gibberellin A_4 which has been related 3 to gibberellin A_4

²P.W. Brian, J.F. Grove and J. MacMillan, "The Gibberellins" in Zechmeister, <u>Prog. Chem. Org. Nat Prod.</u> 18, 350 (1960).

³H. Kitamura, N. Takahashi, Y. Seta, A. Kawarada and Y. Sumiki, Bull. Agric. Chem. Soc. Japan 23, 344 (1959).

⁴N. Takahashi, Y. Seta, H. Kitamura and Y. Sumiki, ibid. 23, 405 (1959).

and hence to gibberellic acid^{5,2} — by Sumiki and his co-workers. We have confirmed this relationship by a new series of reactions.

Acetylation of the keto-ester (VIII), derived from gibberellic acid, 6

yielded the acetate (IX), m.p. 193-195°, which on hydrogenation (Adams

catalyst) in acetic acid containing a trace of perchloric acid afforded the S-lactone (X), m.p. 193-194°, $\nu_{\rm max}^{\rm CHBr}$ 3 1774 and 1738 (broad) cm ⁻¹. Baeyer-Villiger oxidation of the acetate of gibberellin A_L methyl ester nor-ketone (VII), m.p. 189°, $\nu_{\rm max}^{\rm CHBr}$ 3 1771, 1738 cm ⁻¹, with perbenzoic acid gave the same S-lactone (X).

All structures are supported by satisfactory analyses.

J.F. Grove, P.W. Jeffs and T.P.C. Mulholland, <u>J. Chem. Soc.</u> 1236 (1958).

⁶ B.E. Cross. J. Chem. Soc. 3022 (1960).